7.

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: WRSP&M (16CE143) Year & Sem: IV-B.Tech & II-Sem

Course & Branch: B.Tech - CE Regulation: R16

<u>UNIT-I</u>

INTRODUCTION

1.	Define system and discuss various types of systems.	[L1,2] [10M]
2.	Describe about the role of optimization models.	[L2] [10M]
3.	What are the planning and management aspects of water resources system?	[L1] [10M]
4.	What are the advantages and disadvantages of system approach?	[L1] [10M]
5.	What is a system and what do you mean by systems approach to water resources	planning and
	management?	[L1] [10M]
6.	a) Give the classification of optimization problems.	[L3] [2M]
	b) Explain classification based on the nature of the equations involved and physic	cal structure of the
	problem.	[L2] [8M]
	a) Explain classification based on the permissible values of the decision variables	s.[L2] [5M]
	b) Explain classification based on deterministic/ stochastic nature of the variables	s. [L2] [5M]
8.	a) Explain classification based on separability of the functions.	[L2] [5M]
	b) Explain classification based on the number of objective functions.	[L2] [5M]
9.	What is hydrologic system and give the relation between function of input & output	out.[L1,4] [10M]
10.	Explain the terms	[L1] [10M]
	a) System analysis	
	b) Linear programming	
	c) Nonlinear programming	
	d) Geometric programming	
	e) Quadratic programming	

<u>UNIT-II</u>

LINEAR PROGRAMMING-I & LINEAR PROGRAMMING-II

1. How to transform a general form of a LPP to the standard form?

[L1] [10M]

Page 1

2.	a) Which non-basic variable is to be entered?	[L1] [5M]
	b) Which basic variable is to be exited?	[L1] [5M]
3.	a) What are the applications of linear programming in water resources?	[L1] [5M]
	b) What are the different cases of optimal solution?	[L1] [5M]
4.	Write a short note on simplex method.	[L1] [10M]
5.	Consider two crops 1 and 2, one unit of crop1 brings four units of profit an	d one unit of crop2

brings five units of profit. The demand of production of crop1 is A units and that of crop2 is B units. Let x be the amount of water required for A units of crop1 and y be the same for B units of crop2. The linear relations between the amounts of crop produced (I,e., demands A and B) and the available water (i.e., x & y) for two crops are shown below. A = 0.5(x-2)+2, & B = 0.6(y-3)+3

		[L4] [10M]
6.	Explain revised simplex method with example.	[L1] [10M]
7.	Describe the duality of LP problems.	[L2] [10M]
8.	Explain the relation between primal and dual with example.	[L3] [10M]
9.	What is the post optimality analysis and explain with example.	[L1] [10M]
10.	Explain the selection of entering variable, exiting variable & departing variable.	[L1] [10M]

<u>UNIT-III</u>

DYNAMIC PROGRAMMING & NON-LINEAR OPTIMATIZATION TECHNIOUES

1. a) What are principles of optimality?	
b) Explain the backward recursive dynamic programming.	[L1] [8M]
2. a) What is a recursive equation?	[L1] [2M]
b) Explain the forward recursive dynamic programming.	[L1] [8M]
3. Write a short notes on discrete versus continuous dyna programming.	[L1] [10M]
4. Write a short note on multi stage problems.	[L1] [10M]
5. Derive the backward recursive equations.	[L3] [10M]
6. Derive the forward recursive equations.	[L3] [10M]
7. Explain a) Curse of dimensionality	
b) Water allocation problem	[L2] [5M]
8. a) Write a short note on optimization and simulation.	
b) What is the function of single variable?	[L1] [5M]
9. a) What are the convex and concave functions?	
b) Solve the convex function, $f(x)=2x^2$ and concave function, $f(x)=-2x^2$	[L3] [5M]
10. Check for optimal values of $f(x) = 3x^3-6x^2 + 4x-7$ and $f(x) = 12x^5-15x^4-40x^3+81$	[L4] [10M]

<u>UNIT-IV</u>

SIMULATION & WATER RESOURCES ECONOMICS

1.	a) What do you understand by simulation?	[L1] [2M]	
	b) Explain briefly about simulation method.	[L2] [8M]	
2.	a) What are the components of simulation model?	[L1] [5M]	
	b) Write a short note on monte-carlo simulation.	[L1] [5M]	
3.	a) Explain uniformly distributed random numbers.	[L2] [5M]	
	b) The inflow, Q follows an exponential distribution with parameter, T=0.6 Let the first uniformly		
	distributed random number be 0.46. Determine the corresponding inflow.	[L4] [5M]	
4.	Describe the Narmada system simulation model.	[L1] [10M]	
5.	What are the steps involved in simulation of reservoir system?	[L1] [10M]	
6.	The nominal rate of interest is 10%, determine the effective rate of interest when money is		
	compounded. a) Yearly, b) Half yearly, c) Quarterly & d) Daily	[L4] [10M]	
7.	a) Write a short note on combination simulation and optimization.	[L2] [5M]	
	b) What is discount rate and depreciation?	[L1] [5M]	
8.	Describe the benefits and cost estimation.	[L1] [10M]	
9.	Water is supplied from a project for two types of uses rural and urban. The demand curve (DC) for		
	rural is given by p+3y=30 and the demand curve for the urban use is 4p+y=40, where y is the demand		
	and p is price in appropriate units. Determine the combined demand curve?	[L4] [10M]	
10.	Water is supplied from a project for two types of uses rural and urban. The	benefits to rural	
	community are given by $B_r=30$, $Y_r=-3/2y^2$ and those are to be urban community are given by $B_u=$		
$10Y_{\mu}$ - Y_{μ}^{2} /8 if the total cost of the project is C= r ² /2+2Y where Y is the aggregate der			

Determine optimum level of total water supply. Also determine the corresponding components of rural and urban water supply levels. [L4] [10M]

UNIT-V

WATER RESOURCES MANAGEMENT

1.	a) How to manage the water resources system?	[L1] [5M]
	b) What are the steps involved in water resources management?	[L1] [5M]
2.	How to planning the reservoir system and explain it.	[L1] [10M]
3.	What are the important activities of planning of reservoir basins?	[L1] [10M]
4.	How do you optimally operate a single resource system?	[L1] [10M]
5.	Explain how to allocation of water resources.	[L2] [10M]

6. Discuss the various advantages of conjunctive use of surface and sub-surface water resources.

		[L1] [10M]
7.	Explain linear programming techniques for optimal cropping pattern.	[L2] [10M]
8.	Write the components of ground water and surface water balance.	[L2] [10M]
9.	Explain the optimal cropping pattern.	[L1] [10M]
10.	Discuss the various advantages of conjunctive use of water.	[L1] [10M]

Prepared by: <u>GADIGE CHANDRAKANTH</u>